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Abstract 

Mechanical characterization of biological soft tissues is essential in the field of 

biomedical engineering. In this study several loading experiments have been performed 

to efficiently characterize the passive mechanical response of both native porcine renal 

arteries and newly developed tissue constructs. The first aim of these studies is to 

determine whether there is a difference in mechanical response between the main renal 

artery and its first branch. After fitting the bi-axial data to a Holzapfel-type constitutive 

model, the results show that there is no statistical difference between the model 

parameters for renal artery and the first branch. The only significant differences between 

these two vessels were the geometric parameters. The second aim is to characterize the 

response of newly developed tissue constructs during their development, since recent 

studies [3] have shown that they vary in strength over time during the culture process. 

Specifically, mechanical characterization tests for the tissue constructs used in these 

studies show a significant increase in elastic modulus and failure strength as culture time 

is increased from 7 days to 17 days. The uniaxial mechanical test data was fitted to a 

simple single invariant constitutive model to determine appropriate material parameters 

that could be used in future studies to predict the 3-D response of tubular constructs. The 

test data was also used to obtain the low and high strain elastic modulus for elastin 

dominant and collagen dominant phases. The incremental elastic modulus data is useful 

for comparison to published values for other tissues. 
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INTRODUCTION 

Cardiovascular disease (CVD) is the number one cause of death globally. 

Estimates by the World Health Organization state that over 17 million people die from 

CVD each year, which is roughly 30% of all global deaths [1]. For this reason, there is a 

strong interest in understanding how both the heart and arteries behave under 

physiological loading. It is also important to test healthy arteries for their material 

properties so that we can compare “normal” vessel response to the response of diseased 

vessels or replacement grafts. In this study, the initial focus is on the renal artery, which 

provides the kidneys with blood and nutrients. According to a 2013 study, 10% of 

American adults have some level of chronic kidney disease (CKD) and the incidence of 

CKD in people over 60 years old is over 20% [2]. One of the main causes of CKD is 

renal artery stenosis. This condition is caused by the formation of plaque within the renal 

artery, resulting in stiffening of the walls of the artery.  

Unfortunately, there is a lack of data in the literature regarding the biomechanics 

of healthy renal arteries, limiting the amount of baseline data available for comparison 

with diseased arteries. Since the anatomy and structure of porcine and human renal 

arteries are similar, in this study porcine renal arteries are used. Data is obtained that 

describes the passive mechanical behavior of a healthy porcine renal artery for 

comparison to measurements obtained for the first branch renal artery. The data could be 

used to compare with other arteries while also serving as a target for design of 
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replacement renal artery grafts, while also answering the question of whether the same 

material model could be used for both the renal artery and its first branch. 

 As technology advances, better methods for fabricating tissues emerge, such as 

the novel tissue constructs being developed at the Medical University of South Carolina 

(MUSC) which have the potential to be used as a replacement vessel [3]. In a 

collaborative effort with MUSC, commercially available macroporous, gelatin 

microcarriers were seeded with human umbilical vein endothelial cells (HUVECs) and 

human aortic smooth muscle cells (HASMCs) and dispensed in molds made from 

agarose. HUVECs and HASMCs are both anchorage dependent cell types, indicating that 

they must attach to a surface to grow, with the gelatin microcarrier beads acting as a 

scaffold to seed the cells. The agarose molds are used because agarose is bio-inert and 

will not allow HUVECs or HASMCs to attach. These conditions allow for the HUVECs 

and HASMCs to attach only to each other. The result is creation of extracellular matrix 

and cell-to-cell bridging that results in a tissue construct that can withstand mechanical 

loading. In fact, recent histological studies provided by our collaborators show the 

presence of collagen and elastin in the tissue construct [3]. 

In order to determine whether recently developed constructs are appropriate for 

arterial replacement applications, the mechanical properties of constructs are 

characterized using uniaxial loading of ring-shaped specimens that have been in culture 

from 7 to 17 days. As shown in the results of these studies, increasing culture time to 17 

days resulted in a significant increase in mechanical strength of the construct material.  
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CHAPTER 1 

BIOMECHANICS OF PORCINE RENAL ARTERY 

Tissue engineers have extensively studied the type of cells that should be utilized 

when developing replacement blood vessels, while also providing a list of criteria that the 

replacement vessel should meet. In a general sense, to say that one has effectively created 

a replacement, the replacement must effectively mimic the native artery not only 

biologically but also in its response to mechanical load. Though the mechanical responses 

of some arteries have been studied extensively, not all major arteries have been mapped 

out and described in terms of their biomechanical properties. In particular, the properties 

of renal arteries have not been actively studied, resulting in a paucity of experimental 

data. Since such baseline data is necessary for the development of replacement renal 

artery constructs, the work described herein presents the results from recent studies 

focusing on quantifying the behavior of porcine renal arteries. 

Renal arteries provide blood and nutrients to the kidneys, which are high demand 

organs. It is important to determine how these arteries behave under physiological 

loading. For example, it is known that arteries experience significant axial stretch in vivo 

[4,  5]. Several authors have shown that the axial force needed to maintain an artery at its 

in vivo axial stretch does not change with transient cyclical pressurization over the 

normal range [4, 5, 6]. However, the axial force phenomenon noted above has not been 

reported for the porcine renal artery. Furthermore, the properties of the renal artery and 

its first branch have not been compared. In this study, the stress-strain response of renal 
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arteries is measured by subjecting both the primary and first branch renal arteries to a 

combination of internal pressured and axial tensile loads. The results of these 

experiments are highlighted in this report. 

In this study, the axial stretch ratio where the axial force does not change with 

pressurization will be determined. This axial stretch ratio will be considered the “in-vivo” 

stretch ratio. Furthermore, the stress/strain response of renal arteries is measured by 

subjecting both the primary and first branch renal arteries to a combination of internal 

pressures and axial tensile loads. The resulting experimental data from pig renal arteries 

are used to validate a biomechanical model relating the specific axial force phenomenon 

of arteries to the predicted load-dependent average collagen fiber orientation [7]. By 

solving for the parameters of this biomechanical model for the renal artery and the first 

branch, comparisons can be made between the model parameters. 

1.1 MATERIAL CHARACTERIZATION 

Renal arteries are muscular arteries that branch from the abdominal region of the 

aorta and connect to the kidneys at a structure called the hilus. Most individuals have two 

primary renal arteries, one to supply the left kidney and one to supply the right kidney. 

As shown in Figure 1.1, each of these arteries will bifurcate into the anterior and 

posterior segmental arteries before entering the hilus. Oftentimes there are anomalies in 

the geometry. A renal artery might fork into two or three segmental arteries, and one of 

those may bifurcate once more before entering the hilus.  

There can also be a supernumerary renal artery, which occurs when there are two 

renal arteries that branch off the aorta and go to the same kidney; a supernumerary renal 

artery is shown in Figure 1.2. Though both of these anomalies have been observed in our 
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dissections, our studies will focus on comparing the mechanical response of the main 

renal artery (without anomaly) and its first branch when subjected to mechanical loading.   

 

Figure 1.1 Porcine kidneys attached to aorta via renal artery: before (Left)  
and after (Right) adipose tissue removal 
 

 

Figure 1.2 Renal artery in ex vivo state with surrounding tissues removed:  
Note the geometry of the vessels and the supernumerary left renal artery 
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Like all arteries, the renal artery consists of three anatomic layers. The innermost 

layer in direct contact with circulating blood is the intima. This layer provides negligible 

mechanical strength as it normally consists of a single sheet of endothelial cells (ECs) 

and their underlying basement membrane. The next layer is the media, primarily 

composed of smooth muscle cells, collagen, and elastin, which is considered the primary 

load-bearing layer in an artery [8]. The elastin is engaged at low strains (5-10%), and its 

elasticity helps the artery recoil quickly. It is believed that the network of collagen and 

elastin is responsible for the anisotropic behavior of the material, as well as the overall 

strength of the vessel. The outermost layer, the adventitia, is also composed of collagen 

and variable amounts of elastin but with the addition of adipose tissue (fat).  

 

 

 

 

  

 

 

 

 

 

 

Figure 1.3 Schematic of artery by layers and composition (Adapted from [8]) 
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 Since the literature suggests that collagen and elastin are major bearers of load 

in arterial tissues, we investigated the collagen and elastin content of our specimens [9]. 

Paraffin sections of arterial segments were stained with Picrosirius Red and Verhoeff’s 

stain to determine area percent of collagen and elastin, respectively, by image analysis 

(Figure 1.4).  

 

 

Figure 1.4 [Left] Picrosirius Red staining for collagen and [Right] Verhoeff’s staining for 
elastin 
 
 As seen in Figure 1.4 A, the cross-polarized transmitted light microscopic image 

of stained collagen is yellow-orange on a black background, due to the birefringence of 

A 

B 

C 

D 

E 

Intima 

Media 
Adventitia 

Intima Media 

Adventitia 
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collagen. By using the image analysis software, ImagePro, the pixels corresponding to 

collagen can be segmented from the image to measure the total area of collagen (Figure 

1.4 B).  Area percent was calculated by measuring the total area of collagen, dividing by 

the total area of the sample wall and multiplying by 100. The total area of the vessel wall 

is determined by measuring the area of red staining in the corresponding bright field 

image, as seen in Figure 1.4 C.  

 Determining the area fraction of elastin is similar to the procedure used for 

collagen. Figure 1.4 D shows a renal artery section stained with Verhoeff’s stain to 

visualize elastin. Elastin stains blue-black on a grey background. The amount of elastin 

can be measured by determining the total black area, shown segmented in red in Figure 

1.4 E. The total area of the sample wall is measured from the bright field image shown in 

Figure 1.4 D.  

 Results from our studies are shown in Table 1. As shown in Table 1, collagen 

and elastin content are not significantly different in both branch levels of the renal artery. 

Results from a 2 tailed t-test yielded P values larger than P=.05, which suggests that there 

are no major differences in collagen/elastin composition between the main renal and the 

first branch. 

 

Table 1.1 Collagen and Elastin Content in Primary and First Branch Renal Artery 
Specimens 

 

 Sample 
Number % Collagen % Elastin 

Renal Artery 
 11 11.95 ± 0.25 % 9.03 ± 0.14 % 

First Branch/ 
Segmental 4 11.38 ± 0.19 % 8.97 ± 0.04% 
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1.2 MECHANICAL TESTING 

Pairs of porcine kidneys attached to intact abdominal aortic segments were 

acquired post-mortem from a local processing facility, Caughman’s Meat Plant, 

Lexington, SC. Based on information provided by, Caughman’s Meat Plant, the 

specimens were obtained from 2-3 yr old sows (weight range approx. 159-205 kg). After 

removal from the carcass, the arterial specimens remained immersed in phosphate 

buffered saline (PBS) solution until the mechanical loading process was completed; all 

experiments were performed within a few hours of tissue removal from the pig. When 

detaching the porcine renal artery and first branch artery specimens from the kidneys, the 

in situ axial and circumferential stretches were estimated through measurement of (a) the 

axial contraction of the artery specimen during removal and (b) the final outer diameter 

of the artery specimen after removal. The change in geometry associated with a typical 

excision of the renal artery specimens is shown in Figure 1.5.  

 

Figure 1.5 Extraction of renal artery specimens for in-situ measurement of axial and 
circumferential stretches 

 

A B 
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To obtain an estimate for the in situ axial stretch, markers were placed on the 

renal artery specimen at a few locations along the length. Then, with a ruler in the field of 

view, a camera was placed perpendicular to the renal artery and an image of the specimen 

and ruler was acquired prior to excision. After excision, another image was acquired of 

the specimen without altering the camera settings and with a ruler again in the field of 

view. Using these images, post-processing was performed to obtain estimates for the 

axial stretch ratio, λa, between the markers, which is defined as follows;  

λ! =
!!"
!!!

                                                                                                                      Eq 1.1 
 

Laf  is the in situ axial length of the vessel before contraction as seen in Figure 1.5A and is 

considered to be the “stretched” state. La0 is the length of the vessel after excision and 

axial contraction, and is considered to be the “traction-free” or “load-free” length. This is 

considered to be the undeformed state of the specimen. Any change in axial length 

greater than the initial “load-free” length results in axial stretch, λa. The measurement of 

in-situ axial stretch ratios is used in our studies to determine the amount of strain to apply 

during testing. 

To obtain an estimate for the in situ circumferential stretch ratio, λc, the same 

images were again post-processed.  Defining the circumferential stretch ratio, λc, by; 

λ! =
!!"
!!"

                                                                                                                       Eq 1.2 
 
Where Caf is the circumference of the vessel before excision and Ca0 is the 

circumference of the vessel after excision. Ca0 is determined when the vessel has reached 

the “load-free” length. Due to axial contraction, λc <1 for in situ circumferential stretch 

ratios. During pressure loading, λc >1. The value for λc is determined by measuring the 
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diameter of the vessel at several clearly identifiable locations along the vessel before and 

after excision, through post-processing of the images. 

In addition to the in-situ deformations that an artery experiences, studies have 

shown that the excised, contracted artery specimens continue to  have internal 

circumferential “residual” strains. To quantify this strain, the common practice is to 

remove ring specimens from the renal arteryand slice across the thickness of each ring 

specimen to open due to the removal of the residual circumferential stresses. After slicing 

through the thickness, the specimen is allowed to relax for 30 minutes while in solution. 

This process is shown in Figure 1.6.  

 

Figure 1.6 Ring specimen from renal artery before [Left] and 30 min after [Right] slicing 
across thickness into open sector 
 

To quantify the residual strain, the opening angle Φo defined graphically in Figure 

1.7 is measured after 30 minutes. Along with vision-based measurements, this angle is 

used to estimate the final outer circumference of the opened ring specimen so that the 

residual circumferential strain can be determined. 
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                  Figure 1.7 Schematic defining opening angle (Adapted from [8]) 

In this study, the opening angle, Φ0, was determined by image analysis. Three  

measurements of Φ0 were taken manually  and averaged using ImagePro. Two lines (the 

dotted lines in figure 1.7) were manually drawn and the angle between then was 

considered the opening angle. The opening angle can also be solved for geometrically. As 

seen in Figure 1.7: 

Φ = 2(𝜋 − Θ)                                                                                                             Eq.1.3 

  
Φ! = 𝜋 − Θ!                                                                                                            Eq. 1.4 
 
Θ! = (𝜋 −Φ!)                                                                                                           Eq. 1.5 
 
The outer circumference, Co , and the inner circumference, Ci, can be written as functions 

of the inner radius , Ri , outer radius, Ro , and the opening angle, Φ0, as seen below in Eq. 

1.6 and 1.7; 

𝐶! = 2Θ!𝑅! = 2 𝜋 −Φ! 𝑅!                                                                                      Eq. 1.6 
 
𝐶! = 2Θ!𝑅! = 2 𝜋 −Φ! 𝑅!                                                                                    Eq. 1.7 
 

	   Ci	  
	  

C0	  
	  

Ri	  
	  

Ro	  
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The thickness, H, can be written as the difference between the outer and inner radius, 

which can be seen in Eq. 1.8; 

 𝑅! − 𝑅! = 𝐻                                                                                                             Eq. 1.8 
 
The cross sectional area of the open ring specimen is defined as: 
 

𝐴 = ! !!!!!
!

                                                                                          Eq. 1.9 
 
The aim of these equations is to be able to calculate the opening angle based on the 

geometry. Subtracting Eq. 1.6 from Eq. 1.7 leads to the following form; 

𝐶! − 𝐶! = 2𝜋 − 2Φ! 𝑅! − 𝑅!                                                                             Eq. 1.10 

Substituting Eq. 1.8 into 1.10 gives rise to the following equation; 

𝐶! − 𝐶! = (2𝜋 − 2Φ!)𝐻                                                                                          Eq. 1.11 
 
After algebraic manipulation, Φo is defined by: 
 
Φ! = 𝜋 − !!!!!

!!
                                                                                                          Eq 1.12 

where C0 is the outer circumference of the open ring specimen, Ci is the inner 

circumference of the sector, and H is the thickness of the specimen.  This calculated 

value was found to have a high degree of variability in comparison to the measurements 

made by manually measuring the opening angle.  The reason for the high variability in 

the results is due to the irregularity of the inner and outer sector arc length. There is a 

connective tissue on the outer arc length also increases the difficulty of accurately 

measuring the outer arc length.  

Once the initial geometric measurements were obtained, the remaining artery 

specimens were prepared for combined pressurization and axial load experiments. All 

experiments were carried out on a Bose Electroforce Biodynamic 5100 Test Bench 

(Bose, Eden Prairie, MN) shown in Figure 1.8 and Figure 1.9. The Bose Test Bench 
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includes (a) 22N load cell, (b) micro-pump capable of delivering 102ml/min, (c) catheter-

mounted pressure sensor with a range of 0-300mm Hg, (d) actuator that can produce a 

total displacement of 13mm, (e) environmental chamber to maintain hydration of the 

arterial specimens and (f) Bose software to control the entire mechanical loading process.  

 

Figure 1.8 Bose 5200 Biodynamic Test Bench and components 

  

Figure 1.9 Close up of test bench and components  

a	  

b	  

e	  
d	  

c	  

f	  
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A typical renal artery specimen mounted in the test fixture is shown in Figure 1.10.  

 

Figure 1.10 Renal artery specimen in test fixture for combined pressure-axial loading 
experiment 

 

To perform the experiments, each arterial specimen was mounted onto hollow 

cylindrical, barb-ended Luer stubs (McMaster-Carr) using 3-0 silk sutures. After the 

specimen was tied onto the Luer stubs using the suture material, the stub-artery 

combination was attached to the end fixtures of the Bose Test Bench and immersed in a 

bath of 1 X PBS solution within the environmental chamber. The specimen was 

immediately perfused internally with the same solution at room temperature and 

perfusion was maintained throughout the loading process. The length of the specimen 

(between the 2 sutures) at zero load is the initial undeformed length or traction-free 

length, as measured previously. Prior to initiating the experiments, each arterial specimen 

is pre-conditioned mechanically by pre-stretching to an axial strain of 3.5% for three 

cycles. In our experiments, we have found that a preconditioning stretch of 3.5% of the 
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traction-free length was sufficient to obtain consistent results while minimizing damage 

to the specimen.  

Experiments were performed in axial displacement control and pressure control. 

The specimens were subjected to pressure loading over the range 20mmHg ≤ P ≤ 

140mmHg and axial stretch ratios encompassing the range of 1.00 ≤ λz ≤ 1.25. To 

determine the axial stretch ratio, the initial undeformed length was defined to be the 

length of the specimen between the sutured ends when the axial load is zero. During the 

displacement control tests, the pressure was held constant (P=20, 60, 100 or 140mmHg) 

and axial displacement was applied at a constant rate until the maximum stretch ratio, 

λz=1.25, was reached. During the pressure control tests, the axial stretch ratio was held 

constant and the pressure was gradually increased from the initial 20mmHg until the 

maximum pressure of 140mmHg was reached. The pressure was held constant briefly 

while images were acquired. 

During the mechanical loading process, the deformed outer diameter and length of 

the specimen were determined at each loading step by analyzing images of the specimen. 

In this study, all images were acquired using a Grasshopper 50S5M 5.0 megapixel CCD 

camera (Point Grey, Richmond, BC) with a 28mm Nikon lens. Image acquisition was 

performed using Vic-Snap 2010 Software (Correlated Solutions, Columbia, SC). The 

images were analyzed using ImagePro Plus 7 image analysis software (Media 

Cybernetics, McClean, VA) to determine the average deformed diameter in the central 

region and the deformed length. To obtain the axial and circumferential stretch ratios 

during the loading process, the procedures outlined above for measurement of in situ 

dimensions are essentially repeated at each load step to determine the current diameter 
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and current length at selected marker positions along the length. These were then used 

with the reference values to obtain an average axial stretch ratio and average 

circumferential stretch ratio.  

Ten segments of pig renal arteries from five different pigs were tested using this 

protocol. Five segments came from the right renal artery (RRA) of the pigs, one from the 

left renal artery (LRA) and four others came from the left segmental artery (LSA) of the 

pigs, which is the first branch of the renal artery entering the kidney.  

2.3 MECHANICAL CHARACTERIZATION 

The force-displacement data was analyzed to determine stress/strain behavior of the 

material. The Cauchy stress was determined assuming constant density and constant 

volume (V).  

𝑉 = 𝐴! ∗ 𝐿! = 𝐴!!   ∗   𝐿!                                                                                          Eq. 1.13 
 
where Ac is the current cross sectional area,  Lf is the current length during the 

experiment, Aco is the initial cross sectional area at the load free length, L0. Ac can be 

written as; 

𝐴! = 𝜋 𝑟!! − 𝑟!!                                                                                                     Eq 1.14 

where ro is the current outer radius that is measured experimentally and ri is the current 

internal radius that is solved for algebraically, the volume can also be written as; 

𝑉 = 𝜋 𝑟!! − 𝑟!! 𝐿!!                                                                                               Eq. 1.15 
 
Solving for ri 

𝑟! = 𝑟!! −
!

!∗!!!
                                                                                                    Eq. 1.16 

 
Substituting Eq. 1.13 into Eq. 1.16 gives the form;  
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𝑟! = 𝑟!! −
𝐴𝑐∗𝐿𝑎𝑓
𝜋∗𝐿𝑎0

                                                                                                   Eq. 1.17 

 
Because the current cross sectional area cannot be measured while conducting the 

experiments, we can manipulate Eq. 1.17  so that it is a function of variables that are 

either measured before running the experiment (H, Ri, Φ0) , or variables that are 

measured during running the experiment (ro and λa ). Substituting Eq. 1.6, 1.7, and 1.8 

into Eq. 1.9 leads to the following form; 

𝐴 = ! !!!!!
!

= ! !!!!!! !!!!!
!

= ! !!!!!! !!!! !!!
!

                              Eq. 1.18         

Simplifying Eq. 1.18 leads to the following equation; 

𝐴 = 𝐻 𝜋 −Φ! 2𝑅! + 𝐻                                                                                        Eq. 1.19 

Substituting Eq. 1.17 into Eq. 1.19 gives; 

𝑟! = 𝑟!! −
! !!!! !!!!! !!"

!∗!!!
                                                             Eq. 1.20                 

 
Substituting the stretch ratio, Eq. 1.1, into Eq. 1.20 gives rise to the final form of the 

inner radius; 

𝑟! = 𝑟!! −
! !!!! !!!!!

!∗!!
                                                                                      Eq. 1.21 

 
Now that all the equations are defined using variables that are easily measured 

experimentally, analysis on the sample can be completed. The wall force is written as; 

𝐹! = 𝐹! + 𝜋𝑃𝑟!!                                                                                                     Eq. 1.22 
 
where 𝐹! is the measured load from the load cell and ri is the calculated inner radius. The 

axial stress is defined using the following equation; 

𝜎! =
!!

! !!!!!!!
                                                                                                          Eq. 1.23 

 
Assuming thin walled vessels, the circumferential Stress is calculated as follows; 
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𝜎! =
!"#
!

                                                                                                                    Eq. 1.24 
 
The circumferential Stretch Ratio is calculated as; 
 
𝜆! =

!! !!!!!
!!!!!

                                                                                                           Eq. 1.25 
 
Using these equations with measured axial force, applied pressure and measured 

geometric parameters from image analysis, representative axial stress-axial stretch ratio 

curves are presented below in Figure 1.11 and 1.12.  

 
 
        Figure 1.11 Representative axial stress-axial stretch ratio for renal artery 
 

 
  

        Figure 1.12 Representative axial stress-axial stretch ratio for first branch 
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Representative force-pressure curves as a function of axial stretch ratio can be seen below 

in Figures 1.13 and 1.14. 

 

 
       
Figure 1.13 Representative force- pressure curves as a function of axial stretch ratio (SR) 
for renal artery 
 

 
      
Figure 1.14 Representative force-pressure curves as function of axial stretch ratio (SR) 
for first branch of renal artery 
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Representative circumferential stress-circumferential stretch ratio curves are 

presented below in Figures 1.15 and 1.16 

  
Figure 1.15 Representative circumferential stress-circumferential stretch ratio curves as a 
function of axial stretch ratio (SR) for renal artery 
 

       
 
Figure 1.16 Representative circumferential-circumferential stretch ratio curves as a 
function of axial stretch ratio (SR) for first branch of renal artery  
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Using Figures 1.11 to 1.16, multiple conclusions can be presented.  First, when 

comparing the axial stress-axial stretch ratio curves in Figure 1.11 and Figure 1.12, one 

can see that for any given axial stretch ratio, the axial stress is greater in the renal artery 

than in the first branch. This indicates that the renal artery is subjected to greater stresses 

than the first branch, given the same stretch ratio, which means to minimize stress, the 

renal artery should be at a lower “in-vivo” stretch ratio relative to the first branch. This 

prediction was confirmed as we saw that the “in-vivo” stretch ratio was greater for the 

first branch than for the renal artery in Figures 1.13 and 1.14.   

Secondly, the slope of the axial stress- axial stretch data for the renal artery is 

greater than that of the first branch, indicating that the renal artery has a stiffer response 

to axial stretch than the first branch. 

 Thirdly, when comparing the axial load response to change in luminal pressure at 

different axial stretch ratios (Figures 1.13 and 1.14), it is noted that the results are similar 

to typical experimental F-P curves for arteries that have been reported in many scientific 

papers [5, 6, 9, 11]. Inspection of the data in Figs 1.13 and 1.14 shows that the slopes of 

the F-P curve vary at different stretch ratios. However, there is always a stretch ratio such 

that a change in pressure results in no change in axial load (dF/dP=0). The axial stretch 

ratio where dF/dP=0 corresponds to a predicted “in-vivo stretch ratio”, since at this 

stretch ratio the forces in the vessel are minimized [4, 5, 6, 7, 10]. In these experiments, 

the predicted “in-vivo stretch ratio” was greater in the first branch than in the renal artery; 

the predicted “in-vivo” axial stretch ratio for the first branch was 1.2 and 1.07 for the 

renal artery.  
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In comparing the circumferential-circumferential stretch ratio curves (Figure 1.15 

and 1.16), one can deduce that circumferential stress-circumferential stretch ratio 

response was independent of axial stretch ratio. In this test, the internal luminal pressure 

was increased while the outer diameter was measured at different axial stretch ratios. For 

any given circumferential stress, the circumferential stretch ratio was greater for the first 

branch than the renal artery. The increased circumferential stretch ratio suggests the first 

branch was more distensible than the renal artery. 

The mechanical test data presented above was used to identify parameters in an 

adopted 4-fiber family nonlinear elastic constitutive model [7]. The model had 8 

parameters to be determined (listed below).  

- the opening angle: Φ0 

- the orientation angle of helical fibers in the stress-free state: β0  

- the stiffness property of the helical fiber: kβ1  

- the exponential stiffening coefficient of the helical fibers: kβ2 

- the stiffness property of the axial fibers: k901 

- the exponential stiffening coefficient of the axial fibers: k902 

- the stiffness property of the circumferential fibers: k01 

- the exponential stiffening coefficient of the circumferential fibers: k02 

The axial force predicted by the model can be written in the following form; 

( ) ( )( )[ ] 2
a

r

r

22
2

2
0

22
z1z0z rPrdr1kexp1)(sink2)(F~F~
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z901 rdr1kexp1k2                                                    Eq 1.27 
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Our experimental data would only allow for the first 6 of the listed parameters to be 

determined. The parameters and their estimated values are presented in Table 1.2. 

(modified from [7]) 

 

Table 1.2 Identified Model Parameters for Renal Artery and First Branch 

 

O.D  

(mm) 

L 

(mm) 

H 

(mm) 

 Φ0 

(deg) 

kβ1 kβ2 β0 k901 k902 

MAIN 

RENAL 

7.77 

+/- 

1.05  

16.49 

+/- 

5.86 

1.51 

+/- 

0.44 

142.6 

+/- 

87.4 

1677 

+/- 

2686 

3.12 

+/- 

5.32 

39.5 

+/-  

30.2 

42.0 

+/- 

45.4 

8.53 

+/- 

10.8 

FIRST 

BRANCH 

5.09 

+/- 

0.64 

12.56 

+/- 

4.27 

1.13 

+/- 

0.12 

85.5 

+/- 

30.7 

94.82 

+/- 

72.8 

2.49 

+/- 

1.86 

47 

+/- 

28.3 

34.6 

+/- 

37.9 

19.4 

+/- 

35.1 

 

The parameters k901, k902, k01, and k02, should be identified with a separate axial tensile 

test at a controlled zero pressure before carrying out the other pressure control test. This 

separate test was not achieved during this study, which represents a limitation. To 

determine the k901 and k902, axial load values at the beginning of each pressure control 

test when the pressure was zero were used and the values shown for k901, k902 were 

obtained directly from this data. Once determined, the values were set to their mean 

values to determine the remaining four parameters. Despite this limitation, the model is 
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still able to predict the incremental variations of axial loads in arteries when pressures 

and axial stretches vary. 

 The traction-free outer diameter of the main renal artery is significantly greater 

that that of its first branch (segmental artery), 7.8±1.1 mm vs. 5.1±0.6 mm (two-tailed t-

test, P < 0.01), as expected in a diverging, branched arterial tree.  In addition, the arterial 

wall in the stress-free reference configuration is significantly thicker in the main renal 

artery than in the first branch vessel (1.5±0.4 mm vs. 1.1±0.1 mm, P=0.045, 1-tailed t-

test).  Measured opening angles were not significantly different between the main renal 

artery and the first segmental artery.   

 The identified values for all the parameters of this model are reported in Table 

1.2. It should be noted that the small number of specimens and the large variability 

among samples did not allow us to identify any statistically significant differences in 

fitted parameters between the main renal artery and its first branch.  

2.4 CONCLUSIONS 

In these studies a methodology for (a) combined pressure-axial load 

experimentation and (b) determination of the in-situ axial stretch ratio and 

circumferential stretch ratio is presented. The methodology is applied to obtain 

quantitative measurements for porcine renal artery specimens. The results show that there 

is a difference in axial and circumferential stress response between the main renal artery 

and the first branch when subjected to the same combined tension-pressure loading.  

Interestingly, the histological analysis of the test samples showed that there not a 

significant difference in elastin and collagen composition between the two types of 

vessels. Even though both types of specimens had similar collagen content, a potential 
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reason for the difference in mechanical behavior is believed to be variations in average 

collagen fiber angle, which will be quantified in both vessels in future work.  

By fitting a 4-fiber family Holzapfel-type constitutive model to the measured 

response of the renal artery specimens, it was determined that these arterial specimens 

could be modeled using the parameters listed in Table 1.2. There is no statistical 

difference in constitutive model parameters for the renal artery and the first branch. We 

found that there are only statistical differences in geometric parameters. The model 

parameter, β0 , suggests that we should expect to see a higher average collagen fiber angle 

in the first branch than in the main renal artery. 
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CHAPTER 2 

BIOMECHANICS OF A NEWLY DEVELOPED TISSUE CONSTRUCT 

As noted in Chapter 1, understanding how soft tissues behave in response to 

mechanical loading is essential in the field of biomechanics. When a new tissue construct 

is fabricated, it is essential that experiments be performed with minimal measurement 

errors to quantify the material properties that could easily be embedded in appropriate 

mechanical response models.  

Tissue engineered constructs which contain cells derived from the patient’s body 

that are suitable for vascular replacement procedures is a goal in medical research [12]. 

Various approaches have been developed to fabricate blood vessels [13, 14, 15].  These 

include the use of tubular scaffolds manufactured from natural and synthetic biomaterials 

that are subsequently seeded with vascular cells to create living prostheses [16, 17]. An 

alternative approach that would facilitate cell-based fabrication of conduits comprised of 

vascular cells and extracellular matrix (ECM) constituents was developed by 

collaborators at the Medical University of South Carolina (MUSC) [3]. In this study, the 

mechanical responses of such constructs were tested both at multiple culture times and 

multiple culture conditions. 

The investigators at MUSC used macroporous, gelatin microcarriers laden with 

human umbilical vein endothelial cells and aortic smooth muscle cells to develop a new 

tissue construct that could be used in applications of vascular reconstruction.  These 
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microcarriers were dispensed into ring-shaped agarose molds and shown to adhere to 

form living tissue constructs after several days in culture. The ability of cellularized 

microcarriers to adhere to one another involved cellular and extracellular matrix bridging 

that included the formation of epithelium-like cell layers lining the luminal and 

ablumenal surfaces of the constructs and the deposition of collagen and elastin fibers. The 

ring-shaped tissues nominally behaved as elastic solids, with a uniaxial mechanical 

response that is qualitatively similar to that of native vascular tissues and consistent with 

their elastin and collagen composition. Linearized measures of the mechanical response 

of the fabricated tissues at both low and high strains were observed to increase with 

duration of static culture, with no significant loss of stiffness following decellularization. 

The findings highlight the utility of cellularized macroporous gelatin microcarriers as 

self-adhering building blocks for the fabrication of living ring-shaped structures. 

In this study, experiments to quantify the mechanical behavior of ring-shaped 

constructs formed by self-adhering gelatin microcarriers cellularized with human 

endothelial cells (HUVECs) and human aortic smooth muscle cells (SMCs) are 

performed The ring-shaped biological tissue constructs are tested in uniaxial tension 

experiments. Parameters to be determined from the ring test are those employed in a 

single invariant model to be described in Section 2.3.  

2.1 MATERIAL DEVELOPMENT 

Microcarrier beads are 100–300 mm diameter spherical particles that allow 

attachment and growth of anchorage-dependent cells while in suspension culture [18]. 

Microcarrier beads are manufactured from natural and synthetic materials, including 

gelatin, collagen, dextran, glass, polyethylene and polystyrene. Variant forms of 
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microcarrier beads are macroporous, having large pores of tens of micrometers that 

provide additional areas for cells to attach and grow [19]. Microcarriers have been 

generally used for suspension tissue culture to produce high yields of anchorage 

dependent cells and their secreted products, but in recent years their utility in tissue 

regeneration and tissue engineering has emerged [20]. An additional benefit of the gelatin 

microcarriers used in such applications is that they degrade over time in vivo without 

eliciting an inflammatory reaction [21].  

Here, our colleagues at MUSC utilized vascular cell-containing macroporous 

gelatin microcarriers (Cultisphers) in conjunction with agarose molds to facilitate 3D 

tissue engineering of living ring constructs and evaluated their histological and material 

properties. Microcarrier beads (‘Cultisphers’) laden with co-cultured HUVECs/HASMCs 

were dispensed into tubular agarose molds. After several days in culture, the cellularized 

Cultisphers fused to create ring-shaped tissue constructs (4 mm diameter x ~2.5 mm long 

having a 2 mm bore).  

Figure 2.1(a) shows the PEEK (polyetheretherketone) template used to generate 

ring molds in 6-well culture plates. Figure 2.1(b) shows that ring-shaped agarose molds 

are formed in a well of a 6-well culture plate. Figures 2.1(c) and (d) shown end views and 

side views, respectively, of a ring construct having an outer diameter of 4 mm, wall 

thickness of 1 mm, and height of 2.25 mm. Figures 2.1(e) and (f) are high magnification 

views of the boxed areas in panel (c), showing the inter-microcarrier bead material on the 

ablumenal (e) and lumenal (f) surfaces of the tubes (arrows). 
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Figure 2.1 Cellularized Cultisphers placed in ring-shaped agarose molds assemble to 
form tissue ring constructs (Adapted from [3]) 
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Histological studies were performed by our collaborators at the Medical 

University of South Carolina. Figure 2.2, panels A and B, show Masson's trichrome 

staining of frozen sections from ring-shaped constructs cultured for 17 days. Panel C and 

D show cross-polarized light images of Picrosirius Red (PSR) stained frozen sections 

from ring-shaped constructs cultured for 17 days. Arrows point to aligned fibrils, which 

based on their green/yellow birefringence in polarized light are immature collagen fibers. 

 

 

      Figure 2.2 Collagen deposition in ring-shaped tissue constructs (Adapted from [3]) 
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In figure 2.3, a ring-shaped construct was cut longitudinally to permit en face 

examination of the luminal surface. Nuclei were stained blue with Hoechst stain, and 

elastin (red) was visualized by immunohistochemistry using anti-elastin antibody. Panel 

B depicts the parallel orientation of anti-elastin-labeled fibrils shown in A. 

 

      Figure 2.3 Anti-elastin stained whole mount of a ring-shaped construct cultured  
      for 7 days. (Adapted from [3])  
 

2.2 MECHANICAL TESTING 

A uniaxial ring test was used to probe the passive mechanical response of ring-

shaped constructs. To initiate mechanical testing, ring constructs were removed from 

agarose molds after 7, 12 and 17 days of culture and immediately secured onto 

horizontally oriented 25 gauge cannulas mounted to the upper and lower arms of a Bose 

Enduratec 3200 uniaxial mechanical tester (Figure 2.4 and 2.5) 

Samples were kept hydrated with culture medium (1:1 mixture of EGM-2 and 

SMGM) while being mechanically preconditioned with four tensile displacement cycles 

up to 1.2 mm (20–25% strain) at a displacement rate of 0.01 mm/s (Figure 2.6). The 

sample showed minimal hysteresis during preconditioning (Figure 2.7). An identical fifth 
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cycle was then immediately performed, during which load data (50 points/s) was 

recorded by Wintest software.  

 

                      Figure 2.4 Testing a ring-shaped tissue construct on Bose 3200  
                      uniaxial mechanical test bench  

 

 

Figure 2.5 Constructs at (A) relaxed and (B) strained state 
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The white irregularly shaped lines in Figure 2.5 identify refraction at the edges of surface 

culture medium that was used to keep the sampled hydrated during the loading process. 

Region inside white lines is not used in image analysis due to distortions induced by the 

culture medium [25, 27, 28]. 

 

Figure 2.6 Programmed Bose actuator displacement for uniaxial tension experiment in 
displacement control mode 
 

 

Figure 2.7 Specimen loading and unloading curves corresponding to displacement input 
in Figure 2.6, showing minimal hysteresis 
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An image-based technique was used to measure the local strain in the middle 

section of each sample. Immediately before sample mounting, blue tissue marking dye 

was applied by a fine tip applicator to create a dot pattern, as shown in Figure 2.8. A 

series of images was captured throughout testing using a Nikon SMZ-U light microscope 

and a Q-Imaging camera. Using ImagePro 5.1 to spatially calibrate the image, the vertical 

distances between the dots were calculated to facilitate measurement of local strain. The 

vertical distance measurement was determined using point tracking as a digital image 

correlation technique. Due to limitations in total viewing area, a ruler could not be placed 

to calibrate the image. To address this limitation, spatial calibration was achieved by 

using the 25 gauge cannulas as a reference, since the cannulas had a known outer 

diameter of 1mm. 

 

 

       Figure 2.8 Typical speckle pattern for point tracking 

Similar testing was performed on samples that had been decellularized using a 

hypotonic treatment with deionized water followed by a treatment with sodium dodecyl 
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sulfate (SDS) in Dulbecco’s PBS. The constructs were washed in deionized (DI) water 

for 30 min, stirred continuously in PBS containing 1.0% sodium dodecyl sulfate (SDS) 

for 60-65h, and rinsed overnight in DI water. They were then rinsed one more time for 30 

min, and finally stored in fresh DI water.  

2.3 MECHANICAL CHARACTERIZATION  

Mechanical testing was performed on ring-shaped tissue constructs that had been 

cultured between 7 and 17 days in agarose molds. The mechanical response of Cultispher 

rings was highly repeatable among the test samples (n = 5; outer diameter 4.00-4.17 mm, 

wall thickness 1.04-1.12 mm, wall height 2.21-2.25 mm) and exhibited a high degree of 

nonlinearity in the examined range (Figure 2.9). Load and displacement data were 

processed to yield Cauchy stress σ and axial stretch ratio λ as follows, 

𝜎 = !
!!
                                                                                                                            Eq.  2.1  

and 

  λ = !!
!!
                                                                                                          Eq. 2.2 

where F is the measured load, Ac is the current cross-sectional area, Lf is the current test 

segment length, L0 is the initial test segment length, and λ is the axial stretch ratio .  

Constant volume was assumed in determining the cross sectional area. 

V = 𝑡 ∗ ℎ ∗ 𝐿!   = 𝐴! ∗ 𝐿!                                                                                              Eq. 2.3 

 A! =
!
!!
                                                                                                                          Eq. 2.4 

Where V is the volume, t is the specimen thickness, and h is the specimen height. 
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      Figure 2.9 Cauchy stress-strain response of tissue ring constructs at 17 days (n=5) 
 

Even though the specimen was ring-shaped, for the purpose of stress/strain 

analysis it was treated as 2 rectangular posts in tension and data was acquired in the 

straight regions of the ring that were nominally in uniaxial tension [29]. The length of the 

specimen was considered to be the distance between 2 points on the straight portion of 

the specimen when it is mounted onto the cannulas (Figure 2.8). The straight section of 

the specimen corresponds to the middle third of the specimen, a region that is consistent 

with recent findings [29]. The initial volume is defined as the initial length of one post 

multiplied by the height and thickness of the specimen. The current cross sectional area 

can be determined by dividing the volume by the current length of the post. 

 In the previous chapter, the arterial mechanical response was modeled using the 

Holzapfel model. Since parameter identification for the Holzapfel model requires biaxial 

mechanical test data, and biaxial testing could not be accomplished for the ring specimen, 

in this study the mechanical response of the ring specimens was modeled using a simple 

single invariant model [24, 25].  The calibrated single invariant model can be used to 

make predictions regarding the 3-D response of constructs having different geometry, 
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most importantly a tube. In future studies, biaxial tests of tubular constructs made from 

Cultisphers using a similar fabrication method will confirm whether the material 

parameters found using the uniaxial tests can predict biaxial response.  

Basic material assumptions about the mechanical response of the samples were 

imposed for mechanical modeling. The material was assumed to be elastic, 

homogeneous, isotropic, and incompressible. Furthermore, it was hypothesized that the 

strain energy density function W of these materials has the form W = W(I1), where I1 is 

the first invariant of the axial strain tensor calculated as: 

𝐼! = 𝜆! + !
!
                                                               Eq. 2.5 

These material assumptions are motivated by the composition and method of 

preparation of the test samples, and are well-accepted for both synthetic materials that 

feature long-range molecular order such as rubbers and biological materials such as 

elastin. It follows that the one-dimensional constitutive equation for such materials is [25] 

𝜎 = [𝜆! − !
!
][𝜑(𝐼!, 𝐼!)]                                                    Eq. 2.6 

where the non-zero response function φ (I1, I2) is      

𝜑 𝐼!, 𝐼! = 2[!"
!!!
]                                                     Eq. 2.7 

Simple algebraic manipulation of Eq. 2.6 and 2.7 yields 

!"
!!!

= !"
!(!!!!)

  Eq. 2.8 

Linearized plots of ln[dW/dI1] versus I1 can be generated from uniaxial experimental data 

and reveal the functional form of W (Figure 2.10). The high degree of linear correlation 

in the resulting plots suggests the following exponential form for W 

𝑊 = !
!
(𝑒! !!!! − 1)                                                                Eq. 2.9 
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where c and a are material parameters that can be readily extracted from linear regression 

(Figure 2.10). Using the parameterized W, theoretical stress versus stretch ratio curves 

(Figure 2.11) can be generated with the following relation  

𝜎 = 2𝑐 𝜆! − !
!
exp  [𝑎 𝜆! + !

!
− 3 ]                                      Eq. 2.10 

Excellent agreement is observed between the experimental and modeled stress response 

for all samples (Figure 2.11), supporting the proposed mechanical model for Cultispher 

constructs. The parameters extracted from the model will serve to predict the 3-D biaxial 

response of tubular constructs. Due to the limitations in the manufacturing process of the 

tubular construct, biaxial experiments have not yet been conducted to confirm the utility 

of the model. 

 

 

Figure 2.10 Plot of ln[dW/dI1] versus I1 to determine material parameters 
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Figure 2.11 Comparison of fitted model response and experimental data 
 
 
Table 2.1 Fitted Material Parameters for Ring-Construct Tissue Testing 

 

Material 
Conditions 

Sample 
Number Mean (a) Standard 

deviation 
Mean (c) 

(kPa) 
Standard deviation 

(kPa) 

Day 7 
cellularized 5 33.8 23.9 0.96 0.48 

Day 12 
cellularized 5 49.6 24.6 2.2 1.2 

Day 17 
cellularized 5 51.6 57.3 5.9 5.1 

Day 7 
decellularized 5 33.9 24.2 4.1 2.1 

Day 12 
decellularized 5 8.8 8.8 2.0 .77 

Day 17 
decellularized 5 73.3 23.8 7.6 3.0 
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Graphs for the Cauchy stress and strain of the cellularized samples as a function 

of culture time can be seen in Figure 2.12. The sample size was n=5 for each culture 

period. As can be seen in Figure 2.13, decellularization has a minimal effect on stress 

response for day 17 constructs. The sample size was n=5 for both cellularized and 

decellularized constructs. 

 

Figure 2.12 Experimental stretch-stress responses of cellularized tissue constructs 
 

 

Figure 2.13 Comparison of experimental stretch- stress responses of cellularized and 
decellularized 17 day constructs  
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In order to compare the mechanical response of tissue constructs to other tissues 

in the literature, the elastic moduli for the low strain and high strain region were 

calculated. It is well-known that native arterial tissues have mechanical properties that are 

biphasic [22]. The low strain mechanical response is attributed to the extension of elastin 

fibers and the high strain mechanical response is attributed to the extension of collagen 

fibers [30]. In our case, the engineered tissue constructs show similar behavior, with an 

elastin dominant phase, a transition region, and a collagen dominant phase. For this 

reason, we calculated incremental elastic moduli based on the linear portion of the low 

strain region (elastin) and the high strain (collagen) region. Using our sample data, the 

different phases can be seen in Figure 2.14. 

  

Figure 2.14 Elastin dominant phase, transition phase, and collagen dominant phase of 
ring-shaped tissue constructs 
 

To determine the incremental elastic moduli of the elastin- and collagen-dominant 

phases, the experimental data were linearized as seen in Figure 2.14. Table 2.2 

summarizes the incremental elastic moduli of collagen- and elastin-dominant phases for 

culture times between 7 and 17 days. 
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As seen in Table 2.2, Figure 2.15, and Figure 2.16, the average incremental elastic 

modulus for collagen and elastin dominant regions increased with increasing culture time 

for the cellularized samples. We expected to see the same trend with the decellularized 

samples considering the decellularization process had negligible effect on mechanical 

response (Figure 2.13). As evidenced by the data below, we saw a decrease in elastin 

modulus for the decellularized samples between the day 7 and day 12 time points. In all 

cases, except day 12 decellularized, all the ring-shaped constructs with the same culture 

time were cultured simultaneously. For example, when the day 7 rings reached the end of 

their culture time, 5-7 ring specimens were used for cellularized tests, and the rest were 

subjected to decellularization prior to mechanical testing. For the day 12 samples, the 

cellularized and decellularized samples were not from the same batch. For this reason, we 

believe the difference in donor smooth muscle cells was the reason for lack of mechanical 

integrity in the day 12 decellularized constructs.  

 
Table 2.2 Incremental Elastic Moduli and Ultimate Tensile Strength of Ring Constructs 
 

 
Material 

Conditions 

 
Sample 
Number 

 
E-Elastin 

[kPa] 

 
E-Collagen 

[kPa] 

Ultimate 
Tensile 
Strength 

Day 7 
Cellularized 5 5.88 +/- 4.16 43.05 +/- 33.90 15.12 +/- 2.59 

Day 12 
Cellularized 5 17.42 +/- 13.52 231.14 +/- 90.81 33.99 +/- 8.42 

Day 17 
Cellularized 5 34.67 +/- 15.37 268.52 +/- 229.94 47.08 +/- 6.21 

Day 7 
Decellularized 5 20.63 +/- 13.66 120.55 +/- 84.88 11.58 +/- 0.86 

Day 12 
Decellularized 5 8.88 +/- 5.56 28.89 +/- 15.60 35.62 +/- 9.57 

Day 17 
Decellularized 5 114.32 +/- 116.49 575.36 +/- 358.48 37.15 +/- 6.44 



www.manaraa.com

 44  

All data was subjected to a one-way ANOVA with Tukey’s post-hoc analysis, where    

p< .05 was considered significant. 

 

Figure 2.15 Incremental elastic modulus of elastin-dominant phase for cellularized (cell) 
and decellularized (decell) samples 
 
 

 
 
Figure 2.16 Incremental elastic modulus of collagen-dominant phase for cellularized 
(cell) and decellularized (decell) samples 
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Ultimate tensile strength was measured by increasing strain until the maximum load was 

recorded before sample failure. Data for the ultimate tensile strength can be seen in 

Figure 2.17.  

 

Figure 2.17 Ultimate tensile strength of cellularized (cell) and decellularized (decell) 
samples 
 

As seen in Figure 2.17, the average ultimate tensile strength significantly 

increased with increasing culture time for the cellularized samples. There was no 

significant change between the day 12 and day 17 decellularized samples; however, there 

was a significant increase between day 7 and day 17 for the decellularized samples. 

To determine whether static internal circumferential stretch has an effect on the 

tissue specimens, special posts were made for stretching the specimens after the initial 7-

day culture period. It has been shown that HUVECs and HASMCs respond to mechanical 

stimulus by remodeling the extracellular matrix [25].  Wagenseil et al.(2010) showed that 

elastin production results directly from mechanical forces imparted on blood vessels 
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               Figure 2.18 Ring specimen on 2mm agarose posts in molds 

 

      Figure 2.19 Fabricated PLA posts to initiate static circumferential strain 

 
      
     Figure 2.20 Close up of ring specimen on 3mm PLA posts 

 

In this study, after 5 days of culture in agarose molds with 2mm luminal posts 

(Figure 2.18), the ring specimens were removed from the molds. Immediately following 
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removal, the ring specimens were placed on special bio-inert posts made from polylactic 

acid (PLA) for the remainder of the 12 day culture time (Figures 2.19 and 2.20).  

Day 12 cellularized ring specimens on 2mm agarose posts in molds were used as 

the control and day 12 cellularized ring specimens on PLA posts of 2mm and 3mm were 

tested to examine how experimental conditioning parameters influence the mechanical or 

morphological outcomes of these structures. Ring specimens that were cultured on 2mm 

PLA posts were compared to ring specimens cultured on 2mm agarose posts to determine 

whether any changes were attributed to the change of culture environment and boundary 

conditions. Ring specimens of 3mm were subjected to 50% static circumferential strain 

and compared to the 2mm agarose and PLA cultured ring specimens to determine the 

effect of static strain.  

Before mechanical loading experiments were conducted, sample geometry was 

recorded for each specimen after removal from the posts. A relaxation time of at least one 

minute after removal was permitted to allow the specimen to reach its resting geometry 

and to allow for the application of the dot pattern. It was interesting to find significant 

changes in geometry between the different culture conditions. Summarized data 

comparing changes in geometry of the ring specimens can be seen below in Table 2.3. 

Table 2.3 Geometric Parameters of Statically Strained Specimens 
 

Material 
Conditions 

Sample  
Number 

Inner Diameter 
(mm) 

Thickness 
(mm) 

Outer Diameter 
(mm) 

2mm 
Agarose Post 18 2.31 +/- 0.27 0.72 +/- 0.09 3.79 +/- 0.16 

2mm 
PLA Post 17 1.89 +/- 0.35 0.96 +/- 0.19 3.83 +/- 0.21 

3mm 
PLA Post 17 2.41 +/- 0.42 0.88 +/- 0.22 4.20 +/- 0.29 
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Figure 2.21 Comparing inner diameter of stretched and unstretched ring specimens 

 

Figure 2.22 Comparing thickness of stretched and unstretched ring specimens 

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

Agarose	  Mold	   2mm	  Post	   3mm	  Post	  

m
m
	  

Inner	  Diameter	  

0	  

0.5	  

1	  

1.5	  

Agarose	  Mold	   2mm	  Post	   3mm	  Post	  

m
m
	  

Thickness	  



www.manaraa.com

 49  

 

Figure 2.23 Comparing outer diameter of stretched and unstretched ring specimens 

Mechanical testing of statically strained ring constructs and controls was 

conducted as mentioned previously in Section 2.3. Summarized data comparing the 

mechanical response of the ring specimens can be seen below in Table 2.4. 

 
Table 2.4 Elastic Modulus and Ultimate Tensile Strength of Statically Strained 
Specimens  

 

Material 
Conditions 

Sample 
Number 

E-Elastin 
(kPa) 

E-Collagen 
(kPa) 

Ultimate 
Tensile 
Strength 

2mm 
Agarose Post 5 12.42 +/- 13.52 231.14 +/- 90.81 33.99 +/- 8.42 

2mm 
PLA Post 5 27.68 +/- 21.53 228.54 +/- 99.16 40.78 +/- 3.93 

3mm 
PLA Post 5 25.15 +/- 13.11 406.17 +/- 120.33 40.01 +/- 10.18 
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Figure 2.24 Comparing incremental elastic modulus of elastin dominant region for 
stretched and unstretched ring specimens 
 
 

 

Figure 2.25 Comparing incremental elastic modulus of collagen dominant region for 
stretched and unstretched ring specimens 
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Figure 2.26 Comparing ultimate tensile strength for stretched and unstretched ring 
specimens 
 
3.4 CONCLUSION  
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exhibit mechanical responses that are controlled by culture time. Biomechanical testing 

of the constructs demonstrated mechanical behavior consistent with that of an isotropic, 

incompressible, homogeneous, elastic material that could be modeled using a simple 

single invariant material model. Studies show excellent agreement between experimental 

stress strain response and modeled stress strain response. The effect of static strain was 

also examined, and it was found that static stretch during culture did not have an effect on 

the mechanical response. However, we did find significant differences between 

morphologies of statically strained and unstrained constructs. 
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CHAPTER 3 

FUTURE WORK 

3.1 RENAL ARTERY 

Histological studies were conducted to determine the area fraction of collagen and 

elastin in the renal and branch arteries. Future work will include determining the percent 

of smooth muscle cells (SMCs) that are in the specimens to see if there is a difference in 

composition. To determine specifically the constituents of our material, SMC area 

fractions need to be determined to include in our model. SMC content is also important to 

examine in the study of active mechanics. In this paper, all tests were conducted on 

passive arteries, meaning there was no contribution of SMC contraction to mechanical 

responses. In active mechanics, epinephrine is used to stimulate SMC contraction, and 

comparisons can be drawn between the active and passive mechanics. It is important to 

conduct passive tests because they serve as a baseline for the active tests. The 

contribution of the active response is determined by subtracting the contribution of the 

passive response. 

In our Holzapfel-type constitutive model, 4 parameters could not be calculated 

because the appropriate tests were not conducted. In future work, tests on arteries must 

include axial extension tests on renal arteries at zero pressure. In this study, the smallest 

pressure studied was 20mmHg.Lastly, we would like to histologically determine the 

average collagen fiber angle in the renal artery and compare it to that of the first branch. 
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Second harmonic generation (SHG) microscopy could be used to determine this average 

collagen fiber angle. The Holzapfel model described in chapter 1 was able to make 

predictions about the average collagen fiber angles for the renal artery and the first 

branch, and it is important to confirm these values with histological data.  

3.2 NEWLY DEVELOPED TISSUE CONSTRUCT 

 Point tracking was used to determine the average axial strain as described in 

Chapter 2. This method was sufficient for this study; however, to better understand local 

strain variations, a full field digital image correlation (DIC) technique needs to be 

implemented. In this study, the dot pattern used for strain tracking was applied by hand 

using a cotton tip applicator and blue tissue marking dye. We are currently working on a 

nuclear staining technique using Triton-X permeabilization and ethidium bromide to get a 

better full field analysis of the strain. As seen below in Figure 3.1, the light colored 

“dots” are nuclei that are stained. These nuclei will be used to track the tissue strain in the 

deformed state. 

 
 
                     Figure 3.1 Ethidium bromide staining of tissue ring specimen 
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In this study, the effect of static strain during tissue ring culture was examined 

and found not to have a significant influence on mechanical strength. However, in the 

literature it is shown that mechanical forces influence collagen and elastin production. In 

the static strain study, constant circumferential stresses were applied. This allowed the 

material to remodel to minimize stress. In future work, we would like to examine the 

effect of dynamic strain and loading on the ring specimens. A bioreactor has been 

designed that will allow for dynamic loads to be applied during culture (Figure 3.2 and 

3.3). Future studies will examine the effect of dynamic loads on elastin and collagen 

production, as well as on specimen morphology.  

 

                 Figure 3.2 Schematic of dynamic loading bioreactor  

 

Figure 3.3 Dynamic loading bioreactor 
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In this study, the ring specimens were modeled using a single invariant material 

model. This model has utility in being able to predict 3-D biaxial response of a tube 

shaped specimen by using data from a uniaxial ring test. The predictions from this model 

have yet to be validated by testing a tubular specimen. In order to have utility as a 

vascular replacement, tube shaped specimens must be developed. In future work, our 

collaborators will provide tubular constructs that will be tested under the same conditions 

as the renal arteries in chapter 1. Preliminary testing of tube shaped specimens can be 

seen below in Figure 3.4.  

 

Figure 3.4 Tubular specimen undergoing tension-inflation biaxial test 

  



www.manaraa.com

 57  

REFERENCES 

 
[1] M. Alan S. Go, M. D. F. Dariush Mozaffarian and M. M. F. Véronique L. Roger. 
      Heart Disease and Stroke Statistics -2013 Update : A Report from the American     
      Heart Association. Journal of The American Heart Association, pp. e6-e245, 2013.  
 
[2] A. G. Kalamas and C. U. Niemann. Patients with Chronic Kidney Disease. Medical  
      Clinics of North America, pp. 1109-1122, 2013.  
 
[3] W.O Twal, SC Klatt, K Harikrishnan, E Gerges, MA Cooley, TC Trusk, B Zhou, M  
      Gabr, T Shazly, SM Lessner, RR Markwald, WS Argraves. Cellularized  
      Microcarriers as Adhesive Building Blocks for Fabrication of Tubular Tissue  
      Constructs.  Ann Biomed Eng. 2013. 
 
[4] Cardamone, L., A. Valentín, J.F. Eberth, J.D. Humphrey. Origin of axial prestretch  
      and residual stress in arteries. Biomech Model Mechanobiol. 8(6):431-446, 2009. 
 
[5] Van Loon, P., W. Klip, E.L. Bradley. Length–force and volume–pressure     
      relationships of arteries. Biorheology 14:181–201, 1977. 
 
[6] Brossollet, L.J., R.P. Vito. An alternate formulation of blood vessel mechanics and    
      the meaning of the in vivo property. J. Biomech. 28:679–687, 1995. 
 
[7] Avril S, Badel P, Gabr M, Sutton MA, Lessner SM. Biomechanics of Porcine Renal  
      Artery and Role of Axial Stretch. J Biomech Eng. 2013 Aug;135(8):81007. doi:  
      10.1115/1.4024685. 
  
[8] Holzapfel, G.A., Gasser, T.C., Ogden, R.W., 2000. A new constitutive framework for  
      arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1– 
      48. 
 
[9] Holzapfel, G.A. Determination of material models for arterial walls from uniaxial     
      extension tests and histological structure. J. Theor. Biol. 238:290–302, 2006. 
 
[10] Humphrey, J.D., J.F. Eberth, W.W. Dye, R.L. Gleason. Fundamental role of axial  
        stress in compensatory adaptations by arteries. J. Biomech. 42:1–8, 2009 
 
[11] Weizsacker, H.W., H. Lambert, K. Pascale. Analysis of the passive mechanical  
        properties of rat carotid arteries. J. Biomech. 16:703–715, 1983. 
 



www.manaraa.com

 58  

[12] Desai, M., A. M. Seifalian, and G. Hamilton. Role of prosthetic conduits in coronary    
        artery bypass grafting. Eur. J. Cardiothorac. Surg. 40(2):394–398, 2011. 
 
[13] Borschel, G. H., Y. C. Huang, S. Calve, E. M. Arruda, J.B. Lynch, D. E. Dow, W.  
        M. Kuzon, R. G. Dennis, and D.L. Brown. Tissue engineering of recellularized  
        small diameter vascular grafts. Tissue Eng. 11(5–6):778–786, 2005. 
 
[14] L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely  
        biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56, 1998. 
 
[15] Mitchell, S. L., and L. E. Niklason. Requirements for growing tissue-engineered  
        vascular grafts. Cardiovasc. Pathol. 12(2):59–64, 2003. 
 
[16] Buttafoco, L., P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes, and J.  
        Feijen. Physical characterization of vascular grafts cultured in a bioreactor.  
        Biomaterials     
        27(11):2380–2389, 2006. 
 
[17] Hibino, N., E. McGillicuddy, G. Matsumura, Y. Ichihara, Y. Naito, C. Breuer, and  
        T. Shinoka. Late-term results of tissue-engineered vascular grafts in humans. J.  
        Thorac. Cardiovasc. Surg. 139(2):431–436, 2010; 436:e431–e432. 
 
[18] Hirtenstein, M., J. Clark, G. Lindgren, and P. Vretblad. Microcarriers for animal cell  
        culture: a brief review of theory and practice. Dev. Biol. Stand. 46:109–116, 1980. 
 
[19] Nikolai, T. J., and W. S. Hu. Cultivation of mammalian cells on macroporous  
        microcarriers. Enzyme Microb. Technol. 14(3):203–208, 1992. 
 
[20] Martin, Y., M. Eldardiri, D. J. Lawrence-Watt, and J. R. Sharpe. Microcarriers and  
        their potential in tissue regeneration. Tissue Eng. Part B, Rev. 17(1):71–80, 2011. 
 
[21] Clavijo-Alvarez, J. A., V. T. Nguyen, L. Y. Santiago, J. S. Doctor, W. P. Lee, and K.  
        G. Marra. Comparison of biodegradable conduits within aged rat sciatic nerve  
        defects. Plast. Reconstr. Surg. 119(6):1839–1851, 2007. 
 
[22] W.S.Sheridan, G.P.Duffy, B.P. Murphy, “Mechanical characterization of a        
        customized decellularized scaffold for vascular tissue engineering”, Journal of the   
        Mechanical Behavior of Biomedical Materials, 2011. 
 
[23] A. Rachev, T. ElShazly, and D. N. Ku. “Constitutive formulation of mechanical  
        properties of synthetic hydrogels,” ASME International Mechanical Engineering  
        Congress, Nov. 13-19, 2004, Anaheim, CA, USA. 
 
[24] T. ElShazly, 2004. Characterization of PVA Hydrogels with Regards to Vascular  
        Graft Development. MS Thesis, Georgia Institute of Technology, Atlanta, GA.  
 



www.manaraa.com

 59  

[25] Wagenseil J.E., Mecham R.P. Vascular extracellular matrix and arterial mechanics.  
        Physiol Rev. 2009;89:957–989. 
 
[26] X Zhao, HS Zhang, MA Sutton, AP Reynolds, X Deng, HW Schreier and X Ke.     
        Stereo Image Based Particle Tracking in Fluids: Experimental Validation and  
        Application to Friction Extrusion Process Model. Experimental Mechanics (in   
        review). 
 
[27] X. Ke, M.A. Sutton, S. Lessner and H.W. Schreier, Robust stereovision and  
        calibration methodology for accurate 3D digital image correlation measurements on  
        submerged objects, Journal of Strain Analysis for Engineering Design 43 689-704  
        (2008). 
 
[28] Sutton, M.A, C. McFadden, Development of a methodology for non-contacting  
        strain measurements in fluid environments using computer vision, Optics and Lasers  
        in Engineering, 32, 367-377 (2000). 
 
[29] Shazly T., Rachev A., Lessner S.M., Argraves W.S., Ferdous J, Zhou B, Sutton  
        M.A. On the mechanical response of soft tissues under uniaxial loading.  
        Experimental Mechanics. 2013 
 
[30] Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves  
        of arteries. Can. J. Biochem. Physiol. 35(8):681–690, 1957 
 
 
 


	University of South Carolina
	Scholar Commons
	1-1-2013

	Biomechanics of Porcine Renal Artery and the Development of A Replacment Vessel
	Mohamed Gabr
	Recommended Citation


	Microsoft Word - Masters Thesis 18.docx

